Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells
نویسندگان
چکیده
منابع مشابه
Hole-Transport Materials for Perovskite Solar Cells.
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this lev...
متن کاملStable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells.
Novel star-shaped hole transporting materials (HTMs) with a bis-dimethylfluorenylamino moiety have been synthesized and evaluated for high performance perovskite solar cell applications. Maximum power conversion efficiency of 14.21% has been achieved by using the HTM with a fused TPA core and the long-term stability was also shown to be comparable with that of .
متن کاملPerovskite solar cells: from materials to devices.
Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17....
متن کاملHole-Transporting Materials for Printable Perovskite Solar Cells
Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2',7,7'-tetrakis-(N,N'-di-p-methoxyphenylamine)-9,9'-spirobi...
متن کاملRoom-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells.
In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy & Environmental Science
سال: 2019
ISSN: 1754-5692,1754-5706
DOI: 10.1039/c9ee02115a